1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150 |
- // Copyright 2014 Google Inc. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
-
- // Package graph collects a set of samples into a directed graph.
- package graph
-
- import (
- "fmt"
- "math"
- "path/filepath"
- "regexp"
- "sort"
- "strconv"
- "strings"
-
- "github.com/google/pprof/profile"
- )
-
- var (
- javaRegExp = regexp.MustCompile(`^(?:[a-z]\w*\.)*([A-Z][\w\$]*\.(?:<init>|[a-z][\w\$]*(?:\$\d+)?))(?:(?:\()|$)`)
- goRegExp = regexp.MustCompile(`^(?:[\w\-\.]+\/)+(.+)`)
- cppRegExp = regexp.MustCompile(`^(?:(?:\(anonymous namespace\)::)(\w+$))|(?:(?:\(anonymous namespace\)::)?(?:[_a-zA-Z]\w*\::|)*(_*[A-Z]\w*::~?[_a-zA-Z]\w*)$)`)
- )
-
- // Graph summarizes a performance profile into a format that is
- // suitable for visualization.
- type Graph struct {
- Nodes Nodes
- }
-
- // Options encodes the options for constructing a graph
- type Options struct {
- SampleValue func(s []int64) int64 // Function to compute the value of a sample
- SampleMeanDivisor func(s []int64) int64 // Function to compute the divisor for mean graphs, or nil
- FormatTag func(int64, string) string // Function to format a sample tag value into a string
- ObjNames bool // Always preserve obj filename
- OrigFnNames bool // Preserve original (eg mangled) function names
-
- CallTree bool // Build a tree instead of a graph
- DropNegative bool // Drop nodes with overall negative values
-
- KeptNodes NodeSet // If non-nil, only use nodes in this set
- }
-
- // Nodes is an ordered collection of graph nodes.
- type Nodes []*Node
-
- // Node is an entry on a profiling report. It represents a unique
- // program location.
- type Node struct {
- // Info describes the source location associated to this node.
- Info NodeInfo
-
- // Function represents the function that this node belongs to. On
- // graphs with sub-function resolution (eg line number or
- // addresses), two nodes in a NodeMap that are part of the same
- // function have the same value of Node.Function. If the Node
- // represents the whole function, it points back to itself.
- Function *Node
-
- // Values associated to this node. Flat is exclusive to this node,
- // Cum includes all descendents.
- Flat, FlatDiv, Cum, CumDiv int64
-
- // In and out Contains the nodes immediately reaching or reached by
- // this node.
- In, Out EdgeMap
-
- // LabelTags provide additional information about subsets of a sample.
- LabelTags TagMap
-
- // NumericTags provide additional values for subsets of a sample.
- // Numeric tags are optionally associated to a label tag. The key
- // for NumericTags is the name of the LabelTag they are associated
- // to, or "" for numeric tags not associated to a label tag.
- NumericTags map[string]TagMap
- }
-
- // FlatValue returns the exclusive value for this node, computing the
- // mean if a divisor is available.
- func (n *Node) FlatValue() int64 {
- if n.FlatDiv == 0 {
- return n.Flat
- }
- return n.Flat / n.FlatDiv
- }
-
- // CumValue returns the inclusive value for this node, computing the
- // mean if a divisor is available.
- func (n *Node) CumValue() int64 {
- if n.CumDiv == 0 {
- return n.Cum
- }
- return n.Cum / n.CumDiv
- }
-
- // AddToEdge increases the weight of an edge between two nodes. If
- // there isn't such an edge one is created.
- func (n *Node) AddToEdge(to *Node, v int64, residual, inline bool) {
- n.AddToEdgeDiv(to, 0, v, residual, inline)
- }
-
- // AddToEdgeDiv increases the weight of an edge between two nodes. If
- // there isn't such an edge one is created.
- func (n *Node) AddToEdgeDiv(to *Node, dv, v int64, residual, inline bool) {
- if n.Out[to] != to.In[n] {
- panic(fmt.Errorf("asymmetric edges %v %v", *n, *to))
- }
-
- if e := n.Out[to]; e != nil {
- e.WeightDiv += dv
- e.Weight += v
- if residual {
- e.Residual = true
- }
- if !inline {
- e.Inline = false
- }
- return
- }
-
- info := &Edge{Src: n, Dest: to, WeightDiv: dv, Weight: v, Residual: residual, Inline: inline}
- n.Out[to] = info
- to.In[n] = info
- }
-
- // NodeInfo contains the attributes for a node.
- type NodeInfo struct {
- Name string
- OrigName string
- Address uint64
- File string
- StartLine, Lineno int
- Objfile string
- }
-
- // PrintableName calls the Node's Formatter function with a single space separator.
- func (i *NodeInfo) PrintableName() string {
- return strings.Join(i.NameComponents(), " ")
- }
-
- // NameComponents returns the components of the printable name to be used for a node.
- func (i *NodeInfo) NameComponents() []string {
- var name []string
- if i.Address != 0 {
- name = append(name, fmt.Sprintf("%016x", i.Address))
- }
- if fun := i.Name; fun != "" {
- name = append(name, fun)
- }
-
- switch {
- case i.Lineno != 0:
- // User requested line numbers, provide what we have.
- name = append(name, fmt.Sprintf("%s:%d", i.File, i.Lineno))
- case i.File != "":
- // User requested file name, provide it.
- name = append(name, i.File)
- case i.Name != "":
- // User requested function name. It was already included.
- case i.Objfile != "":
- // Only binary name is available
- name = append(name, "["+filepath.Base(i.Objfile)+"]")
- default:
- // Do not leave it empty if there is no information at all.
- name = append(name, "<unknown>")
- }
- return name
- }
-
- // NodeMap maps from a node info struct to a node. It is used to merge
- // report entries with the same info.
- type NodeMap map[NodeInfo]*Node
-
- // NodeSet is a collection of node info structs.
- type NodeSet map[NodeInfo]bool
-
- // NodePtrSet is a collection of nodes. Trimming a graph or tree requires a set
- // of objects which uniquely identify the nodes to keep. In a graph, NodeInfo
- // works as a unique identifier; however, in a tree multiple nodes may share
- // identical NodeInfos. A *Node does uniquely identify a node so we can use that
- // instead. Though a *Node also uniquely identifies a node in a graph,
- // currently, during trimming, graphs are rebuilt from scratch using only the
- // NodeSet, so there would not be the required context of the initial graph to
- // allow for the use of *Node.
- type NodePtrSet map[*Node]bool
-
- // FindOrInsertNode takes the info for a node and either returns a matching node
- // from the node map if one exists, or adds one to the map if one does not.
- // If kept is non-nil, nodes are only added if they can be located on it.
- func (nm NodeMap) FindOrInsertNode(info NodeInfo, kept NodeSet) *Node {
- if kept != nil {
- if _, ok := kept[info]; !ok {
- return nil
- }
- }
-
- if n, ok := nm[info]; ok {
- return n
- }
-
- n := &Node{
- Info: info,
- In: make(EdgeMap),
- Out: make(EdgeMap),
- LabelTags: make(TagMap),
- NumericTags: make(map[string]TagMap),
- }
- nm[info] = n
- if info.Address == 0 && info.Lineno == 0 {
- // This node represents the whole function, so point Function
- // back to itself.
- n.Function = n
- return n
- }
- // Find a node that represents the whole function.
- info.Address = 0
- info.Lineno = 0
- n.Function = nm.FindOrInsertNode(info, nil)
- return n
- }
-
- // EdgeMap is used to represent the incoming/outgoing edges from a node.
- type EdgeMap map[*Node]*Edge
-
- // Edge contains any attributes to be represented about edges in a graph.
- type Edge struct {
- Src, Dest *Node
- // The summary weight of the edge
- Weight, WeightDiv int64
-
- // residual edges connect nodes that were connected through a
- // separate node, which has been removed from the report.
- Residual bool
- // An inline edge represents a call that was inlined into the caller.
- Inline bool
- }
-
- // WeightValue returns the weight value for this edge, normalizing if a
- // divisor is available.
- func (e *Edge) WeightValue() int64 {
- if e.WeightDiv == 0 {
- return e.Weight
- }
- return e.Weight / e.WeightDiv
- }
-
- // Tag represent sample annotations
- type Tag struct {
- Name string
- Unit string // Describe the value, "" for non-numeric tags
- Value int64
- Flat, FlatDiv int64
- Cum, CumDiv int64
- }
-
- // FlatValue returns the exclusive value for this tag, computing the
- // mean if a divisor is available.
- func (t *Tag) FlatValue() int64 {
- if t.FlatDiv == 0 {
- return t.Flat
- }
- return t.Flat / t.FlatDiv
- }
-
- // CumValue returns the inclusive value for this tag, computing the
- // mean if a divisor is available.
- func (t *Tag) CumValue() int64 {
- if t.CumDiv == 0 {
- return t.Cum
- }
- return t.Cum / t.CumDiv
- }
-
- // TagMap is a collection of tags, classified by their name.
- type TagMap map[string]*Tag
-
- // SortTags sorts a slice of tags based on their weight.
- func SortTags(t []*Tag, flat bool) []*Tag {
- ts := tags{t, flat}
- sort.Sort(ts)
- return ts.t
- }
-
- // New summarizes performance data from a profile into a graph.
- func New(prof *profile.Profile, o *Options) *Graph {
- if o.CallTree {
- return newTree(prof, o)
- }
- g, _ := newGraph(prof, o)
- return g
- }
-
- // newGraph computes a graph from a profile. It returns the graph, and
- // a map from the profile location indices to the corresponding graph
- // nodes.
- func newGraph(prof *profile.Profile, o *Options) (*Graph, map[uint64]Nodes) {
- nodes, locationMap := CreateNodes(prof, o)
- for _, sample := range prof.Sample {
- var w, dw int64
- w = o.SampleValue(sample.Value)
- if o.SampleMeanDivisor != nil {
- dw = o.SampleMeanDivisor(sample.Value)
- }
- if dw == 0 && w == 0 {
- continue
- }
- seenNode := make(map[*Node]bool, len(sample.Location))
- seenEdge := make(map[nodePair]bool, len(sample.Location))
- var parent *Node
- // A residual edge goes over one or more nodes that were not kept.
- residual := false
-
- labels := joinLabels(sample)
- // Group the sample frames, based on a global map.
- for i := len(sample.Location) - 1; i >= 0; i-- {
- l := sample.Location[i]
- locNodes := locationMap[l.ID]
- for ni := len(locNodes) - 1; ni >= 0; ni-- {
- n := locNodes[ni]
- if n == nil {
- residual = true
- continue
- }
- // Add cum weight to all nodes in stack, avoiding double counting.
- if _, ok := seenNode[n]; !ok {
- seenNode[n] = true
- n.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, false)
- }
- // Update edge weights for all edges in stack, avoiding double counting.
- if _, ok := seenEdge[nodePair{n, parent}]; !ok && parent != nil && n != parent {
- seenEdge[nodePair{n, parent}] = true
- parent.AddToEdgeDiv(n, dw, w, residual, ni != len(locNodes)-1)
- }
- parent = n
- residual = false
- }
- }
- if parent != nil && !residual {
- // Add flat weight to leaf node.
- parent.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, true)
- }
- }
-
- return selectNodesForGraph(nodes, o.DropNegative), locationMap
- }
-
- func selectNodesForGraph(nodes Nodes, dropNegative bool) *Graph {
- // Collect nodes into a graph.
- gNodes := make(Nodes, 0, len(nodes))
- for _, n := range nodes {
- if n == nil {
- continue
- }
- if n.Cum == 0 && n.Flat == 0 {
- continue
- }
- if dropNegative && isNegative(n) {
- continue
- }
- gNodes = append(gNodes, n)
- }
- return &Graph{gNodes}
- }
-
- type nodePair struct {
- src, dest *Node
- }
-
- func newTree(prof *profile.Profile, o *Options) (g *Graph) {
- parentNodeMap := make(map[*Node]NodeMap, len(prof.Sample))
- for _, sample := range prof.Sample {
- var w, dw int64
- w = o.SampleValue(sample.Value)
- if o.SampleMeanDivisor != nil {
- dw = o.SampleMeanDivisor(sample.Value)
- }
- if dw == 0 && w == 0 {
- continue
- }
- var parent *Node
- labels := joinLabels(sample)
- // Group the sample frames, based on a per-node map.
- for i := len(sample.Location) - 1; i >= 0; i-- {
- l := sample.Location[i]
- lines := l.Line
- if len(lines) == 0 {
- lines = []profile.Line{{}} // Create empty line to include location info.
- }
- for lidx := len(lines) - 1; lidx >= 0; lidx-- {
- nodeMap := parentNodeMap[parent]
- if nodeMap == nil {
- nodeMap = make(NodeMap)
- parentNodeMap[parent] = nodeMap
- }
- n := nodeMap.findOrInsertLine(l, lines[lidx], o)
- if n == nil {
- continue
- }
- n.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, false)
- if parent != nil {
- parent.AddToEdgeDiv(n, dw, w, false, lidx != len(lines)-1)
- }
- parent = n
- }
- }
- if parent != nil {
- parent.addSample(dw, w, labels, sample.NumLabel, sample.NumUnit, o.FormatTag, true)
- }
- }
-
- nodes := make(Nodes, len(prof.Location))
- for _, nm := range parentNodeMap {
- nodes = append(nodes, nm.nodes()...)
- }
- return selectNodesForGraph(nodes, o.DropNegative)
- }
-
- // ShortenFunctionName returns a shortened version of a function's name.
- func ShortenFunctionName(f string) string {
- for _, re := range []*regexp.Regexp{goRegExp, javaRegExp, cppRegExp} {
- if matches := re.FindStringSubmatch(f); len(matches) >= 2 {
- return strings.Join(matches[1:], "")
- }
- }
- return f
- }
-
- // TrimTree trims a Graph in forest form, keeping only the nodes in kept. This
- // will not work correctly if even a single node has multiple parents.
- func (g *Graph) TrimTree(kept NodePtrSet) {
- // Creates a new list of nodes
- oldNodes := g.Nodes
- g.Nodes = make(Nodes, 0, len(kept))
-
- for _, cur := range oldNodes {
- // A node may not have multiple parents
- if len(cur.In) > 1 {
- panic("TrimTree only works on trees")
- }
-
- // If a node should be kept, add it to the new list of nodes
- if _, ok := kept[cur]; ok {
- g.Nodes = append(g.Nodes, cur)
- continue
- }
-
- // If a node has no parents, then delete all of the in edges of its
- // children to make them each roots of their own trees.
- if len(cur.In) == 0 {
- for _, outEdge := range cur.Out {
- delete(outEdge.Dest.In, cur)
- }
- continue
- }
-
- // Get the parent. This works since at this point cur.In must contain only
- // one element.
- if len(cur.In) != 1 {
- panic("Get parent assertion failed. cur.In expected to be of length 1.")
- }
- var parent *Node
- for _, edge := range cur.In {
- parent = edge.Src
- }
-
- parentEdgeInline := parent.Out[cur].Inline
-
- // Remove the edge from the parent to this node
- delete(parent.Out, cur)
-
- // Reconfigure every edge from the current node to now begin at the parent.
- for _, outEdge := range cur.Out {
- child := outEdge.Dest
-
- delete(child.In, cur)
- child.In[parent] = outEdge
- parent.Out[child] = outEdge
-
- outEdge.Src = parent
- outEdge.Residual = true
- // If the edge from the parent to the current node and the edge from the
- // current node to the child are both inline, then this resulting residual
- // edge should also be inline
- outEdge.Inline = parentEdgeInline && outEdge.Inline
- }
- }
- g.RemoveRedundantEdges()
- }
-
- func joinLabels(s *profile.Sample) string {
- if len(s.Label) == 0 {
- return ""
- }
-
- var labels []string
- for key, vals := range s.Label {
- for _, v := range vals {
- labels = append(labels, key+":"+v)
- }
- }
- sort.Strings(labels)
- return strings.Join(labels, `\n`)
- }
-
- // isNegative returns true if the node is considered as "negative" for the
- // purposes of drop_negative.
- func isNegative(n *Node) bool {
- switch {
- case n.Flat < 0:
- return true
- case n.Flat == 0 && n.Cum < 0:
- return true
- default:
- return false
- }
- }
-
- // CreateNodes creates graph nodes for all locations in a profile. It
- // returns set of all nodes, plus a mapping of each location to the
- // set of corresponding nodes (one per location.Line).
- func CreateNodes(prof *profile.Profile, o *Options) (Nodes, map[uint64]Nodes) {
- locations := make(map[uint64]Nodes, len(prof.Location))
- nm := make(NodeMap, len(prof.Location))
- for _, l := range prof.Location {
- lines := l.Line
- if len(lines) == 0 {
- lines = []profile.Line{{}} // Create empty line to include location info.
- }
- nodes := make(Nodes, len(lines))
- for ln := range lines {
- nodes[ln] = nm.findOrInsertLine(l, lines[ln], o)
- }
- locations[l.ID] = nodes
- }
- return nm.nodes(), locations
- }
-
- func (nm NodeMap) nodes() Nodes {
- nodes := make(Nodes, 0, len(nm))
- for _, n := range nm {
- nodes = append(nodes, n)
- }
- return nodes
- }
-
- func (nm NodeMap) findOrInsertLine(l *profile.Location, li profile.Line, o *Options) *Node {
- var objfile string
- if m := l.Mapping; m != nil && m.File != "" {
- objfile = m.File
- }
-
- if ni := nodeInfo(l, li, objfile, o); ni != nil {
- return nm.FindOrInsertNode(*ni, o.KeptNodes)
- }
- return nil
- }
-
- func nodeInfo(l *profile.Location, line profile.Line, objfile string, o *Options) *NodeInfo {
- if line.Function == nil {
- return &NodeInfo{Address: l.Address, Objfile: objfile}
- }
- ni := &NodeInfo{
- Address: l.Address,
- Lineno: int(line.Line),
- Name: line.Function.Name,
- }
- if fname := line.Function.Filename; fname != "" {
- ni.File = filepath.Clean(fname)
- }
- if o.OrigFnNames {
- ni.OrigName = line.Function.SystemName
- }
- if o.ObjNames || (ni.Name == "" && ni.OrigName == "") {
- ni.Objfile = objfile
- ni.StartLine = int(line.Function.StartLine)
- }
- return ni
- }
-
- type tags struct {
- t []*Tag
- flat bool
- }
-
- func (t tags) Len() int { return len(t.t) }
- func (t tags) Swap(i, j int) { t.t[i], t.t[j] = t.t[j], t.t[i] }
- func (t tags) Less(i, j int) bool {
- if !t.flat {
- if t.t[i].Cum != t.t[j].Cum {
- return abs64(t.t[i].Cum) > abs64(t.t[j].Cum)
- }
- }
- if t.t[i].Flat != t.t[j].Flat {
- return abs64(t.t[i].Flat) > abs64(t.t[j].Flat)
- }
- return t.t[i].Name < t.t[j].Name
- }
-
- // Sum adds the flat and cum values of a set of nodes.
- func (ns Nodes) Sum() (flat int64, cum int64) {
- for _, n := range ns {
- flat += n.Flat
- cum += n.Cum
- }
- return
- }
-
- func (n *Node) addSample(dw, w int64, labels string, numLabel map[string][]int64, numUnit map[string][]string, format func(int64, string) string, flat bool) {
- // Update sample value
- if flat {
- n.FlatDiv += dw
- n.Flat += w
- } else {
- n.CumDiv += dw
- n.Cum += w
- }
-
- // Add string tags
- if labels != "" {
- t := n.LabelTags.findOrAddTag(labels, "", 0)
- if flat {
- t.FlatDiv += dw
- t.Flat += w
- } else {
- t.CumDiv += dw
- t.Cum += w
- }
- }
-
- numericTags := n.NumericTags[labels]
- if numericTags == nil {
- numericTags = TagMap{}
- n.NumericTags[labels] = numericTags
- }
- // Add numeric tags
- if format == nil {
- format = defaultLabelFormat
- }
- for k, nvals := range numLabel {
- units := numUnit[k]
- for i, v := range nvals {
- var t *Tag
- if len(units) > 0 {
- t = numericTags.findOrAddTag(format(v, units[i]), units[i], v)
- } else {
- t = numericTags.findOrAddTag(format(v, k), k, v)
- }
- if flat {
- t.FlatDiv += dw
- t.Flat += w
- } else {
- t.CumDiv += dw
- t.Cum += w
- }
- }
- }
- }
-
- func defaultLabelFormat(v int64, key string) string {
- return strconv.FormatInt(v, 10)
- }
-
- func (m TagMap) findOrAddTag(label, unit string, value int64) *Tag {
- l := m[label]
- if l == nil {
- l = &Tag{
- Name: label,
- Unit: unit,
- Value: value,
- }
- m[label] = l
- }
- return l
- }
-
- // String returns a text representation of a graph, for debugging purposes.
- func (g *Graph) String() string {
- var s []string
-
- nodeIndex := make(map[*Node]int, len(g.Nodes))
-
- for i, n := range g.Nodes {
- nodeIndex[n] = i + 1
- }
-
- for i, n := range g.Nodes {
- name := n.Info.PrintableName()
- var in, out []int
-
- for _, from := range n.In {
- in = append(in, nodeIndex[from.Src])
- }
- for _, to := range n.Out {
- out = append(out, nodeIndex[to.Dest])
- }
- s = append(s, fmt.Sprintf("%d: %s[flat=%d cum=%d] %x -> %v ", i+1, name, n.Flat, n.Cum, in, out))
- }
- return strings.Join(s, "\n")
- }
-
- // DiscardLowFrequencyNodes returns a set of the nodes at or over a
- // specific cum value cutoff.
- func (g *Graph) DiscardLowFrequencyNodes(nodeCutoff int64) NodeSet {
- return makeNodeSet(g.Nodes, nodeCutoff)
- }
-
- // DiscardLowFrequencyNodePtrs returns a NodePtrSet of nodes at or over a
- // specific cum value cutoff.
- func (g *Graph) DiscardLowFrequencyNodePtrs(nodeCutoff int64) NodePtrSet {
- cutNodes := getNodesAboveCumCutoff(g.Nodes, nodeCutoff)
- kept := make(NodePtrSet, len(cutNodes))
- for _, n := range cutNodes {
- kept[n] = true
- }
- return kept
- }
-
- func makeNodeSet(nodes Nodes, nodeCutoff int64) NodeSet {
- cutNodes := getNodesAboveCumCutoff(nodes, nodeCutoff)
- kept := make(NodeSet, len(cutNodes))
- for _, n := range cutNodes {
- kept[n.Info] = true
- }
- return kept
- }
-
- // getNodesAboveCumCutoff returns all the nodes which have a Cum value greater
- // than or equal to cutoff.
- func getNodesAboveCumCutoff(nodes Nodes, nodeCutoff int64) Nodes {
- cutoffNodes := make(Nodes, 0, len(nodes))
- for _, n := range nodes {
- if abs64(n.Cum) < nodeCutoff {
- continue
- }
- cutoffNodes = append(cutoffNodes, n)
- }
- return cutoffNodes
- }
-
- // TrimLowFrequencyTags removes tags that have less than
- // the specified weight.
- func (g *Graph) TrimLowFrequencyTags(tagCutoff int64) {
- // Remove nodes with value <= total*nodeFraction
- for _, n := range g.Nodes {
- n.LabelTags = trimLowFreqTags(n.LabelTags, tagCutoff)
- for s, nt := range n.NumericTags {
- n.NumericTags[s] = trimLowFreqTags(nt, tagCutoff)
- }
- }
- }
-
- func trimLowFreqTags(tags TagMap, minValue int64) TagMap {
- kept := TagMap{}
- for s, t := range tags {
- if abs64(t.Flat) >= minValue || abs64(t.Cum) >= minValue {
- kept[s] = t
- }
- }
- return kept
- }
-
- // TrimLowFrequencyEdges removes edges that have less than
- // the specified weight. Returns the number of edges removed
- func (g *Graph) TrimLowFrequencyEdges(edgeCutoff int64) int {
- var droppedEdges int
- for _, n := range g.Nodes {
- for src, e := range n.In {
- if abs64(e.Weight) < edgeCutoff {
- delete(n.In, src)
- delete(src.Out, n)
- droppedEdges++
- }
- }
- }
- return droppedEdges
- }
-
- // SortNodes sorts the nodes in a graph based on a specific heuristic.
- func (g *Graph) SortNodes(cum bool, visualMode bool) {
- // Sort nodes based on requested mode
- switch {
- case visualMode:
- // Specialized sort to produce a more visually-interesting graph
- g.Nodes.Sort(EntropyOrder)
- case cum:
- g.Nodes.Sort(CumNameOrder)
- default:
- g.Nodes.Sort(FlatNameOrder)
- }
- }
-
- // SelectTopNodePtrs returns a set of the top maxNodes *Node in a graph.
- func (g *Graph) SelectTopNodePtrs(maxNodes int, visualMode bool) NodePtrSet {
- set := make(NodePtrSet)
- for _, node := range g.selectTopNodes(maxNodes, visualMode) {
- set[node] = true
- }
- return set
- }
-
- // SelectTopNodes returns a set of the top maxNodes nodes in a graph.
- func (g *Graph) SelectTopNodes(maxNodes int, visualMode bool) NodeSet {
- return makeNodeSet(g.selectTopNodes(maxNodes, visualMode), 0)
- }
-
- // selectTopNodes returns a slice of the top maxNodes nodes in a graph.
- func (g *Graph) selectTopNodes(maxNodes int, visualMode bool) Nodes {
- if maxNodes > 0 {
- if visualMode {
- var count int
- // If generating a visual graph, count tags as nodes. Update
- // maxNodes to account for them.
- for i, n := range g.Nodes {
- tags := countTags(n)
- if tags > maxNodelets {
- tags = maxNodelets
- }
- if count += tags + 1; count >= maxNodes {
- maxNodes = i + 1
- break
- }
- }
- }
- }
- if maxNodes > len(g.Nodes) {
- maxNodes = len(g.Nodes)
- }
- return g.Nodes[:maxNodes]
- }
-
- // countTags counts the tags with flat count. This underestimates the
- // number of tags being displayed, but in practice is close enough.
- func countTags(n *Node) int {
- count := 0
- for _, e := range n.LabelTags {
- if e.Flat != 0 {
- count++
- }
- }
- for _, t := range n.NumericTags {
- for _, e := range t {
- if e.Flat != 0 {
- count++
- }
- }
- }
- return count
- }
-
- // RemoveRedundantEdges removes residual edges if the destination can
- // be reached through another path. This is done to simplify the graph
- // while preserving connectivity.
- func (g *Graph) RemoveRedundantEdges() {
- // Walk the nodes and outgoing edges in reverse order to prefer
- // removing edges with the lowest weight.
- for i := len(g.Nodes); i > 0; i-- {
- n := g.Nodes[i-1]
- in := n.In.Sort()
- for j := len(in); j > 0; j-- {
- e := in[j-1]
- if !e.Residual {
- // Do not remove edges heavier than a non-residual edge, to
- // avoid potential confusion.
- break
- }
- if isRedundantEdge(e) {
- delete(e.Src.Out, e.Dest)
- delete(e.Dest.In, e.Src)
- }
- }
- }
- }
-
- // isRedundantEdge determines if there is a path that allows e.Src
- // to reach e.Dest after removing e.
- func isRedundantEdge(e *Edge) bool {
- src, n := e.Src, e.Dest
- seen := map[*Node]bool{n: true}
- queue := Nodes{n}
- for len(queue) > 0 {
- n := queue[0]
- queue = queue[1:]
- for _, ie := range n.In {
- if e == ie || seen[ie.Src] {
- continue
- }
- if ie.Src == src {
- return true
- }
- seen[ie.Src] = true
- queue = append(queue, ie.Src)
- }
- }
- return false
- }
-
- // nodeSorter is a mechanism used to allow a report to be sorted
- // in different ways.
- type nodeSorter struct {
- rs Nodes
- less func(l, r *Node) bool
- }
-
- func (s nodeSorter) Len() int { return len(s.rs) }
- func (s nodeSorter) Swap(i, j int) { s.rs[i], s.rs[j] = s.rs[j], s.rs[i] }
- func (s nodeSorter) Less(i, j int) bool { return s.less(s.rs[i], s.rs[j]) }
-
- // Sort reorders a slice of nodes based on the specified ordering
- // criteria. The result is sorted in decreasing order for (absolute)
- // numeric quantities, alphabetically for text, and increasing for
- // addresses.
- func (ns Nodes) Sort(o NodeOrder) error {
- var s nodeSorter
-
- switch o {
- case FlatNameOrder:
- s = nodeSorter{ns,
- func(l, r *Node) bool {
- if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
- return iv > jv
- }
- if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
- return iv < jv
- }
- if iv, jv := abs64(l.Cum), abs64(r.Cum); iv != jv {
- return iv > jv
- }
- return compareNodes(l, r)
- },
- }
- case FlatCumNameOrder:
- s = nodeSorter{ns,
- func(l, r *Node) bool {
- if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
- return iv > jv
- }
- if iv, jv := abs64(l.Cum), abs64(r.Cum); iv != jv {
- return iv > jv
- }
- if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
- return iv < jv
- }
- return compareNodes(l, r)
- },
- }
- case NameOrder:
- s = nodeSorter{ns,
- func(l, r *Node) bool {
- if iv, jv := l.Info.Name, r.Info.Name; iv != jv {
- return iv < jv
- }
- return compareNodes(l, r)
- },
- }
- case FileOrder:
- s = nodeSorter{ns,
- func(l, r *Node) bool {
- if iv, jv := l.Info.File, r.Info.File; iv != jv {
- return iv < jv
- }
- if iv, jv := l.Info.StartLine, r.Info.StartLine; iv != jv {
- return iv < jv
- }
- return compareNodes(l, r)
- },
- }
- case AddressOrder:
- s = nodeSorter{ns,
- func(l, r *Node) bool {
- if iv, jv := l.Info.Address, r.Info.Address; iv != jv {
- return iv < jv
- }
- return compareNodes(l, r)
- },
- }
- case CumNameOrder, EntropyOrder:
- // Hold scoring for score-based ordering
- var score map[*Node]int64
- scoreOrder := func(l, r *Node) bool {
- if iv, jv := abs64(score[l]), abs64(score[r]); iv != jv {
- return iv > jv
- }
- if iv, jv := l.Info.PrintableName(), r.Info.PrintableName(); iv != jv {
- return iv < jv
- }
- if iv, jv := abs64(l.Flat), abs64(r.Flat); iv != jv {
- return iv > jv
- }
- return compareNodes(l, r)
- }
-
- switch o {
- case CumNameOrder:
- score = make(map[*Node]int64, len(ns))
- for _, n := range ns {
- score[n] = n.Cum
- }
- s = nodeSorter{ns, scoreOrder}
- case EntropyOrder:
- score = make(map[*Node]int64, len(ns))
- for _, n := range ns {
- score[n] = entropyScore(n)
- }
- s = nodeSorter{ns, scoreOrder}
- }
- default:
- return fmt.Errorf("report: unrecognized sort ordering: %d", o)
- }
- sort.Sort(s)
- return nil
- }
-
- // compareNodes compares two nodes to provide a deterministic ordering
- // between them. Two nodes cannot have the same Node.Info value.
- func compareNodes(l, r *Node) bool {
- return fmt.Sprint(l.Info) < fmt.Sprint(r.Info)
- }
-
- // entropyScore computes a score for a node representing how important
- // it is to include this node on a graph visualization. It is used to
- // sort the nodes and select which ones to display if we have more
- // nodes than desired in the graph. This number is computed by looking
- // at the flat and cum weights of the node and the incoming/outgoing
- // edges. The fundamental idea is to penalize nodes that have a simple
- // fallthrough from their incoming to the outgoing edge.
- func entropyScore(n *Node) int64 {
- score := float64(0)
-
- if len(n.In) == 0 {
- score++ // Favor entry nodes
- } else {
- score += edgeEntropyScore(n, n.In, 0)
- }
-
- if len(n.Out) == 0 {
- score++ // Favor leaf nodes
- } else {
- score += edgeEntropyScore(n, n.Out, n.Flat)
- }
-
- return int64(score*float64(n.Cum)) + n.Flat
- }
-
- // edgeEntropyScore computes the entropy value for a set of edges
- // coming in or out of a node. Entropy (as defined in information
- // theory) refers to the amount of information encoded by the set of
- // edges. A set of edges that have a more interesting distribution of
- // samples gets a higher score.
- func edgeEntropyScore(n *Node, edges EdgeMap, self int64) float64 {
- score := float64(0)
- total := self
- for _, e := range edges {
- if e.Weight > 0 {
- total += abs64(e.Weight)
- }
- }
- if total != 0 {
- for _, e := range edges {
- frac := float64(abs64(e.Weight)) / float64(total)
- score += -frac * math.Log2(frac)
- }
- if self > 0 {
- frac := float64(abs64(self)) / float64(total)
- score += -frac * math.Log2(frac)
- }
- }
- return score
- }
-
- // NodeOrder sets the ordering for a Sort operation
- type NodeOrder int
-
- // Sorting options for node sort.
- const (
- FlatNameOrder NodeOrder = iota
- FlatCumNameOrder
- CumNameOrder
- NameOrder
- FileOrder
- AddressOrder
- EntropyOrder
- )
-
- // Sort returns a slice of the edges in the map, in a consistent
- // order. The sort order is first based on the edge weight
- // (higher-to-lower) and then by the node names to avoid flakiness.
- func (e EdgeMap) Sort() []*Edge {
- el := make(edgeList, 0, len(e))
- for _, w := range e {
- el = append(el, w)
- }
-
- sort.Sort(el)
- return el
- }
-
- // Sum returns the total weight for a set of nodes.
- func (e EdgeMap) Sum() int64 {
- var ret int64
- for _, edge := range e {
- ret += edge.Weight
- }
- return ret
- }
-
- type edgeList []*Edge
-
- func (el edgeList) Len() int {
- return len(el)
- }
-
- func (el edgeList) Less(i, j int) bool {
- if el[i].Weight != el[j].Weight {
- return abs64(el[i].Weight) > abs64(el[j].Weight)
- }
-
- from1 := el[i].Src.Info.PrintableName()
- from2 := el[j].Src.Info.PrintableName()
- if from1 != from2 {
- return from1 < from2
- }
-
- to1 := el[i].Dest.Info.PrintableName()
- to2 := el[j].Dest.Info.PrintableName()
-
- return to1 < to2
- }
-
- func (el edgeList) Swap(i, j int) {
- el[i], el[j] = el[j], el[i]
- }
-
- func abs64(i int64) int64 {
- if i < 0 {
- return -i
- }
- return i
- }
|