123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170 |
- // Copyright 2014 Google Inc. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
-
- // Package report summarizes a performance profile into a
- // human-readable report.
- package report
-
- import (
- "fmt"
- "io"
- "math"
- "path/filepath"
- "regexp"
- "sort"
- "strconv"
- "strings"
- "text/tabwriter"
- "time"
-
- "github.com/google/pprof/internal/graph"
- "github.com/google/pprof/internal/measurement"
- "github.com/google/pprof/internal/plugin"
- "github.com/google/pprof/profile"
- )
-
- // Output formats.
- const (
- Callgrind = iota
- Comments
- Dis
- Dot
- List
- Proto
- Raw
- Tags
- Text
- TopProto
- Traces
- Tree
- WebList
- )
-
- // Options are the formatting and filtering options used to generate a
- // profile.
- type Options struct {
- OutputFormat int
-
- CumSort bool
- CallTree bool
- DropNegative bool
- PositivePercentages bool
- CompactLabels bool
- Ratio float64
- Title string
- ProfileLabels []string
-
- NodeCount int
- NodeFraction float64
- EdgeFraction float64
-
- SampleValue func(s []int64) int64
- SampleMeanDivisor func(s []int64) int64
- SampleType string
- SampleUnit string // Unit for the sample data from the profile.
-
- OutputUnit string // Units for data formatting in report.
-
- Symbol *regexp.Regexp // Symbols to include on disassembly report.
- SourcePath string // Search path for source files.
- }
-
- // Generate generates a report as directed by the Report.
- func Generate(w io.Writer, rpt *Report, obj plugin.ObjTool) error {
- o := rpt.options
-
- switch o.OutputFormat {
- case Comments:
- return printComments(w, rpt)
- case Dot:
- return printDOT(w, rpt)
- case Tree:
- return printTree(w, rpt)
- case Text:
- return printText(w, rpt)
- case Traces:
- return printTraces(w, rpt)
- case Raw:
- fmt.Fprint(w, rpt.prof.String())
- return nil
- case Tags:
- return printTags(w, rpt)
- case Proto:
- return rpt.prof.Write(w)
- case TopProto:
- return printTopProto(w, rpt)
- case Dis:
- return printAssembly(w, rpt, obj)
- case List:
- return printSource(w, rpt)
- case WebList:
- return printWebSource(w, rpt, obj)
- case Callgrind:
- return printCallgrind(w, rpt)
- }
- return fmt.Errorf("unexpected output format")
- }
-
- // newTrimmedGraph creates a graph for this report, trimmed according
- // to the report options.
- func (rpt *Report) newTrimmedGraph() (g *graph.Graph, origCount, droppedNodes, droppedEdges int) {
- o := rpt.options
-
- // Build a graph and refine it. On each refinement step we must rebuild the graph from the samples,
- // as the graph itself doesn't contain enough information to preserve full precision.
- visualMode := o.OutputFormat == Dot
- cumSort := o.CumSort
-
- // The call_tree option is only honored when generating visual representations of the callgraph.
- callTree := o.CallTree && (o.OutputFormat == Dot || o.OutputFormat == Callgrind)
-
- // First step: Build complete graph to identify low frequency nodes, based on their cum weight.
- g = rpt.newGraph(nil)
- totalValue, _ := g.Nodes.Sum()
- nodeCutoff := abs64(int64(float64(totalValue) * o.NodeFraction))
- edgeCutoff := abs64(int64(float64(totalValue) * o.EdgeFraction))
-
- // Filter out nodes with cum value below nodeCutoff.
- if nodeCutoff > 0 {
- if callTree {
- if nodesKept := g.DiscardLowFrequencyNodePtrs(nodeCutoff); len(g.Nodes) != len(nodesKept) {
- droppedNodes = len(g.Nodes) - len(nodesKept)
- g.TrimTree(nodesKept)
- }
- } else {
- if nodesKept := g.DiscardLowFrequencyNodes(nodeCutoff); len(g.Nodes) != len(nodesKept) {
- droppedNodes = len(g.Nodes) - len(nodesKept)
- g = rpt.newGraph(nodesKept)
- }
- }
- }
- origCount = len(g.Nodes)
-
- // Second step: Limit the total number of nodes. Apply specialized heuristics to improve
- // visualization when generating dot output.
- g.SortNodes(cumSort, visualMode)
- if nodeCount := o.NodeCount; nodeCount > 0 {
- // Remove low frequency tags and edges as they affect selection.
- g.TrimLowFrequencyTags(nodeCutoff)
- g.TrimLowFrequencyEdges(edgeCutoff)
- if callTree {
- if nodesKept := g.SelectTopNodePtrs(nodeCount, visualMode); len(g.Nodes) != len(nodesKept) {
- g.TrimTree(nodesKept)
- g.SortNodes(cumSort, visualMode)
- }
- } else {
- if nodesKept := g.SelectTopNodes(nodeCount, visualMode); len(g.Nodes) != len(nodesKept) {
- g = rpt.newGraph(nodesKept)
- g.SortNodes(cumSort, visualMode)
- }
- }
- }
-
- // Final step: Filter out low frequency tags and edges, and remove redundant edges that clutter
- // the graph.
- g.TrimLowFrequencyTags(nodeCutoff)
- droppedEdges = g.TrimLowFrequencyEdges(edgeCutoff)
- if visualMode {
- g.RemoveRedundantEdges()
- }
- return
- }
-
- func (rpt *Report) selectOutputUnit(g *graph.Graph) {
- o := rpt.options
-
- // Select best unit for profile output.
- // Find the appropriate units for the smallest non-zero sample
- if o.OutputUnit != "minimum" || len(g.Nodes) == 0 {
- return
- }
- var minValue int64
-
- for _, n := range g.Nodes {
- nodeMin := abs64(n.FlatValue())
- if nodeMin == 0 {
- nodeMin = abs64(n.CumValue())
- }
- if nodeMin > 0 && (minValue == 0 || nodeMin < minValue) {
- minValue = nodeMin
- }
- }
- maxValue := rpt.total
- if minValue == 0 {
- minValue = maxValue
- }
-
- if r := o.Ratio; r > 0 && r != 1 {
- minValue = int64(float64(minValue) * r)
- maxValue = int64(float64(maxValue) * r)
- }
-
- _, minUnit := measurement.Scale(minValue, o.SampleUnit, "minimum")
- _, maxUnit := measurement.Scale(maxValue, o.SampleUnit, "minimum")
-
- unit := minUnit
- if minUnit != maxUnit && minValue*100 < maxValue && o.OutputFormat != Callgrind {
- // Minimum and maximum values have different units. Scale
- // minimum by 100 to use larger units, allowing minimum value to
- // be scaled down to 0.01, except for callgrind reports since
- // they can only represent integer values.
- _, unit = measurement.Scale(100*minValue, o.SampleUnit, "minimum")
- }
-
- if unit != "" {
- o.OutputUnit = unit
- } else {
- o.OutputUnit = o.SampleUnit
- }
- }
-
- // newGraph creates a new graph for this report. If nodes is non-nil,
- // only nodes whose info matches are included. Otherwise, all nodes
- // are included, without trimming.
- func (rpt *Report) newGraph(nodes graph.NodeSet) *graph.Graph {
- o := rpt.options
-
- // Clean up file paths using heuristics.
- prof := rpt.prof
- for _, f := range prof.Function {
- f.Filename = trimPath(f.Filename)
- }
- // Remove numeric tags not recognized by pprof.
- for _, s := range prof.Sample {
- numLabels := make(map[string][]int64, len(s.NumLabel))
- for k, v := range s.NumLabel {
- if k == "bytes" {
- numLabels[k] = append(numLabels[k], v...)
- }
- }
- s.NumLabel = numLabels
- }
-
- formatTag := func(v int64, key string) string {
- return measurement.ScaledLabel(v, key, o.OutputUnit)
- }
-
- gopt := &graph.Options{
- SampleValue: o.SampleValue,
- SampleMeanDivisor: o.SampleMeanDivisor,
- FormatTag: formatTag,
- CallTree: o.CallTree && (o.OutputFormat == Dot || o.OutputFormat == Callgrind),
- DropNegative: o.DropNegative,
- KeptNodes: nodes,
- }
-
- // Only keep binary names for disassembly-based reports, otherwise
- // remove it to allow merging of functions across binaries.
- switch o.OutputFormat {
- case Raw, List, WebList, Dis, Callgrind:
- gopt.ObjNames = true
- }
-
- return graph.New(rpt.prof, gopt)
- }
-
- func printTopProto(w io.Writer, rpt *Report) error {
- p := rpt.prof
- o := rpt.options
- g, _, _, _ := rpt.newTrimmedGraph()
- rpt.selectOutputUnit(g)
-
- out := profile.Profile{
- SampleType: []*profile.ValueType{
- {Type: "cum", Unit: o.OutputUnit},
- {Type: "flat", Unit: o.OutputUnit},
- },
- TimeNanos: p.TimeNanos,
- DurationNanos: p.DurationNanos,
- PeriodType: p.PeriodType,
- Period: p.Period,
- }
- functionMap := make(functionMap)
- for i, n := range g.Nodes {
- f := functionMap.FindOrAdd(n.Info)
- flat, cum := n.FlatValue(), n.CumValue()
- l := &profile.Location{
- ID: uint64(i + 1),
- Address: n.Info.Address,
- Line: []profile.Line{
- {
- Line: int64(n.Info.Lineno),
- Function: f,
- },
- },
- }
-
- fv, _ := measurement.Scale(flat, o.SampleUnit, o.OutputUnit)
- cv, _ := measurement.Scale(cum, o.SampleUnit, o.OutputUnit)
- s := &profile.Sample{
- Location: []*profile.Location{l},
- Value: []int64{int64(cv), int64(fv)},
- }
- out.Function = append(out.Function, f)
- out.Location = append(out.Location, l)
- out.Sample = append(out.Sample, s)
- }
-
- return out.Write(w)
- }
-
- type functionMap map[string]*profile.Function
-
- func (fm functionMap) FindOrAdd(ni graph.NodeInfo) *profile.Function {
- fName := fmt.Sprintf("%q%q%q%d", ni.Name, ni.OrigName, ni.File, ni.StartLine)
-
- if f := fm[fName]; f != nil {
- return f
- }
-
- f := &profile.Function{
- ID: uint64(len(fm) + 1),
- Name: ni.Name,
- SystemName: ni.OrigName,
- Filename: ni.File,
- StartLine: int64(ni.StartLine),
- }
- fm[fName] = f
- return f
- }
-
- // printAssembly prints an annotated assembly listing.
- func printAssembly(w io.Writer, rpt *Report, obj plugin.ObjTool) error {
- o := rpt.options
- prof := rpt.prof
-
- g := rpt.newGraph(nil)
-
- // If the regexp source can be parsed as an address, also match
- // functions that land on that address.
- var address *uint64
- if hex, err := strconv.ParseUint(o.Symbol.String(), 0, 64); err == nil {
- address = &hex
- }
-
- fmt.Fprintln(w, "Total:", rpt.formatValue(rpt.total))
- symbols := symbolsFromBinaries(prof, g, o.Symbol, address, obj)
- symNodes := nodesPerSymbol(g.Nodes, symbols)
- // Sort function names for printing.
- var syms objSymbols
- for s := range symNodes {
- syms = append(syms, s)
- }
- sort.Sort(syms)
-
- // Correlate the symbols from the binary with the profile samples.
- for _, s := range syms {
- sns := symNodes[s]
-
- // Gather samples for this symbol.
- flatSum, cumSum := sns.Sum()
-
- // Get the function assembly.
- insts, err := obj.Disasm(s.sym.File, s.sym.Start, s.sym.End)
- if err != nil {
- return err
- }
-
- ns := annotateAssembly(insts, sns, s.base)
-
- fmt.Fprintf(w, "ROUTINE ======================== %s\n", s.sym.Name[0])
- for _, name := range s.sym.Name[1:] {
- fmt.Fprintf(w, " AKA ======================== %s\n", name)
- }
- fmt.Fprintf(w, "%10s %10s (flat, cum) %s of Total\n",
- rpt.formatValue(flatSum), rpt.formatValue(cumSum),
- percentage(cumSum, rpt.total))
-
- function, file, line := "", "", 0
- for _, n := range ns {
- locStr := ""
- // Skip loc information if it hasn't changed from previous instruction.
- if n.function != function || n.file != file || n.line != line {
- function, file, line = n.function, n.file, n.line
- if n.function != "" {
- locStr = n.function + " "
- }
- if n.file != "" {
- locStr += n.file
- if n.line != 0 {
- locStr += fmt.Sprintf(":%d", n.line)
- }
- }
- }
- switch {
- case locStr == "":
- // No location info, just print the instruction.
- fmt.Fprintf(w, "%10s %10s %10x: %s\n",
- valueOrDot(n.flatValue(), rpt),
- valueOrDot(n.cumValue(), rpt),
- n.address, n.instruction,
- )
- case len(n.instruction) < 40:
- // Short instruction, print loc on the same line.
- fmt.Fprintf(w, "%10s %10s %10x: %-40s;%s\n",
- valueOrDot(n.flatValue(), rpt),
- valueOrDot(n.cumValue(), rpt),
- n.address, n.instruction,
- locStr,
- )
- default:
- // Long instruction, print loc on a separate line.
- fmt.Fprintf(w, "%74s;%s\n", "", locStr)
- fmt.Fprintf(w, "%10s %10s %10x: %s\n",
- valueOrDot(n.flatValue(), rpt),
- valueOrDot(n.cumValue(), rpt),
- n.address, n.instruction,
- )
- }
- }
- }
- return nil
- }
-
- // symbolsFromBinaries examines the binaries listed on the profile
- // that have associated samples, and identifies symbols matching rx.
- func symbolsFromBinaries(prof *profile.Profile, g *graph.Graph, rx *regexp.Regexp, address *uint64, obj plugin.ObjTool) []*objSymbol {
- hasSamples := make(map[string]bool)
- // Only examine mappings that have samples that match the
- // regexp. This is an optimization to speed up pprof.
- for _, n := range g.Nodes {
- if name := n.Info.PrintableName(); rx.MatchString(name) && n.Info.Objfile != "" {
- hasSamples[n.Info.Objfile] = true
- }
- }
-
- // Walk all mappings looking for matching functions with samples.
- var objSyms []*objSymbol
- for _, m := range prof.Mapping {
- if !hasSamples[m.File] {
- if address == nil || !(m.Start <= *address && *address <= m.Limit) {
- continue
- }
- }
-
- f, err := obj.Open(m.File, m.Start, m.Limit, m.Offset)
- if err != nil {
- fmt.Printf("%v\n", err)
- continue
- }
-
- // Find symbols in this binary matching the user regexp.
- var addr uint64
- if address != nil {
- addr = *address
- }
- msyms, err := f.Symbols(rx, addr)
- base := f.Base()
- f.Close()
- if err != nil {
- continue
- }
- for _, ms := range msyms {
- objSyms = append(objSyms,
- &objSymbol{
- sym: ms,
- base: base,
- },
- )
- }
- }
-
- return objSyms
- }
-
- // objSym represents a symbol identified from a binary. It includes
- // the SymbolInfo from the disasm package and the base that must be
- // added to correspond to sample addresses
- type objSymbol struct {
- sym *plugin.Sym
- base uint64
- }
-
- // objSymbols is a wrapper type to enable sorting of []*objSymbol.
- type objSymbols []*objSymbol
-
- func (o objSymbols) Len() int {
- return len(o)
- }
-
- func (o objSymbols) Less(i, j int) bool {
- if namei, namej := o[i].sym.Name[0], o[j].sym.Name[0]; namei != namej {
- return namei < namej
- }
- return o[i].sym.Start < o[j].sym.Start
- }
-
- func (o objSymbols) Swap(i, j int) {
- o[i], o[j] = o[j], o[i]
- }
-
- // nodesPerSymbol classifies nodes into a group of symbols.
- func nodesPerSymbol(ns graph.Nodes, symbols []*objSymbol) map[*objSymbol]graph.Nodes {
- symNodes := make(map[*objSymbol]graph.Nodes)
- for _, s := range symbols {
- // Gather samples for this symbol.
- for _, n := range ns {
- address := n.Info.Address - s.base
- if address >= s.sym.Start && address < s.sym.End {
- symNodes[s] = append(symNodes[s], n)
- }
- }
- }
- return symNodes
- }
-
- type assemblyInstruction struct {
- address uint64
- instruction string
- function string
- file string
- line int
- flat, cum int64
- flatDiv, cumDiv int64
- startsBlock bool
- }
-
- func (a *assemblyInstruction) flatValue() int64 {
- if a.flatDiv != 0 {
- return a.flat / a.flatDiv
- }
- return a.flat
- }
-
- func (a *assemblyInstruction) cumValue() int64 {
- if a.cumDiv != 0 {
- return a.cum / a.cumDiv
- }
- return a.cum
- }
-
- // annotateAssembly annotates a set of assembly instructions with a
- // set of samples. It returns a set of nodes to display. base is an
- // offset to adjust the sample addresses.
- func annotateAssembly(insts []plugin.Inst, samples graph.Nodes, base uint64) []assemblyInstruction {
- // Add end marker to simplify printing loop.
- insts = append(insts, plugin.Inst{
- Addr: ^uint64(0),
- })
-
- // Ensure samples are sorted by address.
- samples.Sort(graph.AddressOrder)
-
- s := 0
- asm := make([]assemblyInstruction, 0, len(insts))
- for ix, in := range insts[:len(insts)-1] {
- n := assemblyInstruction{
- address: in.Addr,
- instruction: in.Text,
- function: in.Function,
- line: in.Line,
- }
- if in.File != "" {
- n.file = filepath.Base(in.File)
- }
-
- // Sum all the samples until the next instruction (to account
- // for samples attributed to the middle of an instruction).
- for next := insts[ix+1].Addr; s < len(samples) && samples[s].Info.Address-base < next; s++ {
- sample := samples[s]
- n.flatDiv += sample.FlatDiv
- n.flat += sample.Flat
- n.cumDiv += sample.CumDiv
- n.cum += sample.Cum
- if f := sample.Info.File; f != "" && n.file == "" {
- n.file = filepath.Base(f)
- }
- if ln := sample.Info.Lineno; ln != 0 && n.line == 0 {
- n.line = ln
- }
- if f := sample.Info.Name; f != "" && n.function == "" {
- n.function = f
- }
- }
- asm = append(asm, n)
- }
-
- return asm
- }
-
- // valueOrDot formats a value according to a report, intercepting zero
- // values.
- func valueOrDot(value int64, rpt *Report) string {
- if value == 0 {
- return "."
- }
- return rpt.formatValue(value)
- }
-
- // printTags collects all tags referenced in the profile and prints
- // them in a sorted table.
- func printTags(w io.Writer, rpt *Report) error {
- p := rpt.prof
-
- o := rpt.options
- formatTag := func(v int64, key string) string {
- return measurement.ScaledLabel(v, key, o.OutputUnit)
- }
-
- // Hashtable to keep accumulate tags as key,value,count.
- tagMap := make(map[string]map[string]int64)
- for _, s := range p.Sample {
- for key, vals := range s.Label {
- for _, val := range vals {
- valueMap, ok := tagMap[key]
- if !ok {
- valueMap = make(map[string]int64)
- tagMap[key] = valueMap
- }
- valueMap[val] += o.SampleValue(s.Value)
- }
- }
- for key, vals := range s.NumLabel {
- for _, nval := range vals {
- val := formatTag(nval, key)
- valueMap, ok := tagMap[key]
- if !ok {
- valueMap = make(map[string]int64)
- tagMap[key] = valueMap
- }
- valueMap[val] += o.SampleValue(s.Value)
- }
- }
- }
-
- tagKeys := make([]*graph.Tag, 0, len(tagMap))
- for key := range tagMap {
- tagKeys = append(tagKeys, &graph.Tag{Name: key})
- }
- tabw := tabwriter.NewWriter(w, 0, 0, 1, ' ', tabwriter.AlignRight)
- for _, tagKey := range graph.SortTags(tagKeys, true) {
- var total int64
- key := tagKey.Name
- tags := make([]*graph.Tag, 0, len(tagMap[key]))
- for t, c := range tagMap[key] {
- total += c
- tags = append(tags, &graph.Tag{Name: t, Flat: c})
- }
-
- f, u := measurement.Scale(total, o.SampleUnit, o.OutputUnit)
- fmt.Fprintf(tabw, "%s:\t Total %.1f%s\n", key, f, u)
- for _, t := range graph.SortTags(tags, true) {
- f, u := measurement.Scale(t.FlatValue(), o.SampleUnit, o.OutputUnit)
- if total > 0 {
- fmt.Fprintf(tabw, " \t%.1f%s (%s):\t %s\n", f, u, percentage(t.FlatValue(), total), t.Name)
- } else {
- fmt.Fprintf(tabw, " \t%.1f%s:\t %s\n", f, u, t.Name)
- }
- }
- fmt.Fprintln(tabw)
- }
- return tabw.Flush()
- }
-
- // printComments prints all freeform comments in the profile.
- func printComments(w io.Writer, rpt *Report) error {
- p := rpt.prof
-
- for _, c := range p.Comments {
- fmt.Fprintln(w, c)
- }
- return nil
- }
-
- // printText prints a flat text report for a profile.
- func printText(w io.Writer, rpt *Report) error {
- g, origCount, droppedNodes, _ := rpt.newTrimmedGraph()
- rpt.selectOutputUnit(g)
-
- fmt.Fprintln(w, strings.Join(reportLabels(rpt, g, origCount, droppedNodes, 0, false), "\n"))
-
- fmt.Fprintf(w, "%10s %5s%% %5s%% %10s %5s%%\n",
- "flat", "flat", "sum", "cum", "cum")
-
- var flatSum int64
- for _, n := range g.Nodes {
- name, flat, cum := n.Info.PrintableName(), n.FlatValue(), n.CumValue()
-
- var inline, noinline bool
- for _, e := range n.In {
- if e.Inline {
- inline = true
- } else {
- noinline = true
- }
- }
-
- if inline {
- if noinline {
- name = name + " (partial-inline)"
- } else {
- name = name + " (inline)"
- }
- }
-
- flatSum += flat
- fmt.Fprintf(w, "%10s %s %s %10s %s %s\n",
- rpt.formatValue(flat),
- percentage(flat, rpt.total),
- percentage(flatSum, rpt.total),
- rpt.formatValue(cum),
- percentage(cum, rpt.total),
- name)
- }
- return nil
- }
-
- // printTraces prints all traces from a profile.
- func printTraces(w io.Writer, rpt *Report) error {
- fmt.Fprintln(w, strings.Join(ProfileLabels(rpt), "\n"))
-
- prof := rpt.prof
- o := rpt.options
-
- const separator = "-----------+-------------------------------------------------------"
-
- _, locations := graph.CreateNodes(prof, &graph.Options{})
- for _, sample := range prof.Sample {
- var stack graph.Nodes
- for _, loc := range sample.Location {
- id := loc.ID
- stack = append(stack, locations[id]...)
- }
-
- if len(stack) == 0 {
- continue
- }
-
- fmt.Fprintln(w, separator)
- // Print any text labels for the sample.
- var labels []string
- for s, vs := range sample.Label {
- labels = append(labels, fmt.Sprintf("%10s: %s\n", s, strings.Join(vs, " ")))
- }
- sort.Strings(labels)
- fmt.Fprint(w, strings.Join(labels, ""))
- var d, v int64
- v = o.SampleValue(sample.Value)
- if o.SampleMeanDivisor != nil {
- d = o.SampleMeanDivisor(sample.Value)
- }
- // Print call stack.
- if d != 0 {
- v = v / d
- }
- fmt.Fprintf(w, "%10s %s\n",
- rpt.formatValue(v), stack[0].Info.PrintableName())
- for _, s := range stack[1:] {
- fmt.Fprintf(w, "%10s %s\n", "", s.Info.PrintableName())
- }
- }
- fmt.Fprintln(w, separator)
- return nil
- }
-
- // printCallgrind prints a graph for a profile on callgrind format.
- func printCallgrind(w io.Writer, rpt *Report) error {
- o := rpt.options
- rpt.options.NodeFraction = 0
- rpt.options.EdgeFraction = 0
- rpt.options.NodeCount = 0
-
- g, _, _, _ := rpt.newTrimmedGraph()
- rpt.selectOutputUnit(g)
-
- nodeNames := getDisambiguatedNames(g)
-
- fmt.Fprintln(w, "positions: instr line")
- fmt.Fprintln(w, "events:", o.SampleType+"("+o.OutputUnit+")")
-
- objfiles := make(map[string]int)
- files := make(map[string]int)
- names := make(map[string]int)
-
- // prevInfo points to the previous NodeInfo.
- // It is used to group cost lines together as much as possible.
- var prevInfo *graph.NodeInfo
- for _, n := range g.Nodes {
- if prevInfo == nil || n.Info.Objfile != prevInfo.Objfile || n.Info.File != prevInfo.File || n.Info.Name != prevInfo.Name {
- fmt.Fprintln(w)
- fmt.Fprintln(w, "ob="+callgrindName(objfiles, n.Info.Objfile))
- fmt.Fprintln(w, "fl="+callgrindName(files, n.Info.File))
- fmt.Fprintln(w, "fn="+callgrindName(names, n.Info.Name))
- }
-
- addr := callgrindAddress(prevInfo, n.Info.Address)
- sv, _ := measurement.Scale(n.FlatValue(), o.SampleUnit, o.OutputUnit)
- fmt.Fprintf(w, "%s %d %d\n", addr, n.Info.Lineno, int64(sv))
-
- // Print outgoing edges.
- for _, out := range n.Out.Sort() {
- c, _ := measurement.Scale(out.Weight, o.SampleUnit, o.OutputUnit)
- callee := out.Dest
- fmt.Fprintln(w, "cfl="+callgrindName(files, callee.Info.File))
- fmt.Fprintln(w, "cfn="+callgrindName(names, nodeNames[callee]))
- // pprof doesn't have a flat weight for a call, leave as 0.
- fmt.Fprintf(w, "calls=0 %s %d\n", callgrindAddress(prevInfo, callee.Info.Address), callee.Info.Lineno)
- // TODO: This address may be in the middle of a call
- // instruction. It would be best to find the beginning
- // of the instruction, but the tools seem to handle
- // this OK.
- fmt.Fprintf(w, "* * %d\n", int64(c))
- }
-
- prevInfo = &n.Info
- }
-
- return nil
- }
-
- // getDisambiguatedNames returns a map from each node in the graph to
- // the name to use in the callgrind output. Callgrind merges all
- // functions with the same [file name, function name]. Add a [%d/n]
- // suffix to disambiguate nodes with different values of
- // node.Function, which we want to keep separate. In particular, this
- // affects graphs created with --call_tree, where nodes from different
- // contexts are associated to different Functions.
- func getDisambiguatedNames(g *graph.Graph) map[*graph.Node]string {
- nodeName := make(map[*graph.Node]string, len(g.Nodes))
-
- type names struct {
- file, function string
- }
-
- // nameFunctionIndex maps the callgrind names (filename, function)
- // to the node.Function values found for that name, and each
- // node.Function value to a sequential index to be used on the
- // disambiguated name.
- nameFunctionIndex := make(map[names]map[*graph.Node]int)
- for _, n := range g.Nodes {
- nm := names{n.Info.File, n.Info.Name}
- p, ok := nameFunctionIndex[nm]
- if !ok {
- p = make(map[*graph.Node]int)
- nameFunctionIndex[nm] = p
- }
- if _, ok := p[n.Function]; !ok {
- p[n.Function] = len(p)
- }
- }
-
- for _, n := range g.Nodes {
- nm := names{n.Info.File, n.Info.Name}
- nodeName[n] = n.Info.Name
- if p := nameFunctionIndex[nm]; len(p) > 1 {
- // If there is more than one function, add suffix to disambiguate.
- nodeName[n] += fmt.Sprintf(" [%d/%d]", p[n.Function]+1, len(p))
- }
- }
- return nodeName
- }
-
- // callgrindName implements the callgrind naming compression scheme.
- // For names not previously seen returns "(N) name", where N is a
- // unique index. For names previously seen returns "(N)" where N is
- // the index returned the first time.
- func callgrindName(names map[string]int, name string) string {
- if name == "" {
- return ""
- }
- if id, ok := names[name]; ok {
- return fmt.Sprintf("(%d)", id)
- }
- id := len(names) + 1
- names[name] = id
- return fmt.Sprintf("(%d) %s", id, name)
- }
-
- // callgrindAddress implements the callgrind subposition compression scheme if
- // possible. If prevInfo != nil, it contains the previous address. The current
- // address can be given relative to the previous address, with an explicit +/-
- // to indicate it is relative, or * for the same address.
- func callgrindAddress(prevInfo *graph.NodeInfo, curr uint64) string {
- abs := fmt.Sprintf("%#x", curr)
- if prevInfo == nil {
- return abs
- }
-
- prev := prevInfo.Address
- if prev == curr {
- return "*"
- }
-
- diff := int64(curr - prev)
- relative := fmt.Sprintf("%+d", diff)
-
- // Only bother to use the relative address if it is actually shorter.
- if len(relative) < len(abs) {
- return relative
- }
-
- return abs
- }
-
- // printTree prints a tree-based report in text form.
- func printTree(w io.Writer, rpt *Report) error {
- const separator = "----------------------------------------------------------+-------------"
- const legend = " flat flat% sum% cum cum% calls calls% + context "
-
- g, origCount, droppedNodes, _ := rpt.newTrimmedGraph()
- rpt.selectOutputUnit(g)
-
- fmt.Fprintln(w, strings.Join(reportLabels(rpt, g, origCount, droppedNodes, 0, false), "\n"))
-
- fmt.Fprintln(w, separator)
- fmt.Fprintln(w, legend)
- var flatSum int64
-
- rx := rpt.options.Symbol
- for _, n := range g.Nodes {
- name, flat, cum := n.Info.PrintableName(), n.FlatValue(), n.CumValue()
-
- // Skip any entries that do not match the regexp (for the "peek" command).
- if rx != nil && !rx.MatchString(name) {
- continue
- }
-
- fmt.Fprintln(w, separator)
- // Print incoming edges.
- inEdges := n.In.Sort()
- for _, in := range inEdges {
- var inline string
- if in.Inline {
- inline = " (inline)"
- }
- fmt.Fprintf(w, "%50s %s | %s%s\n", rpt.formatValue(in.Weight),
- percentage(in.Weight, cum), in.Src.Info.PrintableName(), inline)
- }
-
- // Print current node.
- flatSum += flat
- fmt.Fprintf(w, "%10s %s %s %10s %s | %s\n",
- rpt.formatValue(flat),
- percentage(flat, rpt.total),
- percentage(flatSum, rpt.total),
- rpt.formatValue(cum),
- percentage(cum, rpt.total),
- name)
-
- // Print outgoing edges.
- outEdges := n.Out.Sort()
- for _, out := range outEdges {
- var inline string
- if out.Inline {
- inline = " (inline)"
- }
- fmt.Fprintf(w, "%50s %s | %s%s\n", rpt.formatValue(out.Weight),
- percentage(out.Weight, cum), out.Dest.Info.PrintableName(), inline)
- }
- }
- if len(g.Nodes) > 0 {
- fmt.Fprintln(w, separator)
- }
- return nil
- }
-
- // printDOT prints an annotated callgraph in DOT format.
- func printDOT(w io.Writer, rpt *Report) error {
- g, origCount, droppedNodes, droppedEdges := rpt.newTrimmedGraph()
- rpt.selectOutputUnit(g)
- labels := reportLabels(rpt, g, origCount, droppedNodes, droppedEdges, true)
-
- o := rpt.options
- formatTag := func(v int64, key string) string {
- return measurement.ScaledLabel(v, key, o.OutputUnit)
- }
-
- c := &graph.DotConfig{
- Title: rpt.options.Title,
- Labels: labels,
- FormatValue: rpt.formatValue,
- FormatTag: formatTag,
- Total: rpt.total,
- }
- graph.ComposeDot(w, g, &graph.DotAttributes{}, c)
- return nil
- }
-
- // percentage computes the percentage of total of a value, and encodes
- // it as a string. At least two digits of precision are printed.
- func percentage(value, total int64) string {
- var ratio float64
- if total != 0 {
- ratio = math.Abs(float64(value)/float64(total)) * 100
- }
- switch {
- case math.Abs(ratio) >= 99.95 && math.Abs(ratio) <= 100.05:
- return " 100%"
- case math.Abs(ratio) >= 1.0:
- return fmt.Sprintf("%5.2f%%", ratio)
- default:
- return fmt.Sprintf("%5.2g%%", ratio)
- }
- }
-
- // ProfileLabels returns printable labels for a profile.
- func ProfileLabels(rpt *Report) []string {
- label := []string{}
- prof := rpt.prof
- o := rpt.options
- if len(prof.Mapping) > 0 {
- if prof.Mapping[0].File != "" {
- label = append(label, "File: "+filepath.Base(prof.Mapping[0].File))
- }
- if prof.Mapping[0].BuildID != "" {
- label = append(label, "Build ID: "+prof.Mapping[0].BuildID)
- }
- }
- // Only include comments that do not start with '#'.
- for _, c := range prof.Comments {
- if !strings.HasPrefix(c, "#") {
- label = append(label, c)
- }
- }
- if o.SampleType != "" {
- label = append(label, "Type: "+o.SampleType)
- }
- if prof.TimeNanos != 0 {
- const layout = "Jan 2, 2006 at 3:04pm (MST)"
- label = append(label, "Time: "+time.Unix(0, prof.TimeNanos).Format(layout))
- }
- if prof.DurationNanos != 0 {
- duration := measurement.Label(prof.DurationNanos, "nanoseconds")
- totalNanos, totalUnit := measurement.Scale(rpt.total, o.SampleUnit, "nanoseconds")
- var ratio string
- if totalUnit == "ns" && totalNanos != 0 {
- ratio = "(" + percentage(int64(totalNanos), prof.DurationNanos) + ")"
- }
- label = append(label, fmt.Sprintf("Duration: %s, Total samples = %s %s", duration, rpt.formatValue(rpt.total), ratio))
- }
- return label
- }
-
- // reportLabels returns printable labels for a report. Includes
- // profileLabels.
- func reportLabels(rpt *Report, g *graph.Graph, origCount, droppedNodes, droppedEdges int, fullHeaders bool) []string {
- nodeFraction := rpt.options.NodeFraction
- edgeFraction := rpt.options.EdgeFraction
- nodeCount := len(g.Nodes)
-
- var label []string
- if len(rpt.options.ProfileLabels) > 0 {
- label = append(label, rpt.options.ProfileLabels...)
- } else if fullHeaders || !rpt.options.CompactLabels {
- label = ProfileLabels(rpt)
- }
-
- var flatSum int64
- for _, n := range g.Nodes {
- flatSum = flatSum + n.FlatValue()
- }
-
- label = append(label, fmt.Sprintf("Showing nodes accounting for %s, %s of %s total", rpt.formatValue(flatSum), strings.TrimSpace(percentage(flatSum, rpt.total)), rpt.formatValue(rpt.total)))
-
- if rpt.total != 0 {
- if droppedNodes > 0 {
- label = append(label, genLabel(droppedNodes, "node", "cum",
- rpt.formatValue(abs64(int64(float64(rpt.total)*nodeFraction)))))
- }
- if droppedEdges > 0 {
- label = append(label, genLabel(droppedEdges, "edge", "freq",
- rpt.formatValue(abs64(int64(float64(rpt.total)*edgeFraction)))))
- }
- if nodeCount > 0 && nodeCount < origCount {
- label = append(label, fmt.Sprintf("Showing top %d nodes out of %d",
- nodeCount, origCount))
- }
- }
- return label
- }
-
- func genLabel(d int, n, l, f string) string {
- if d > 1 {
- n = n + "s"
- }
- return fmt.Sprintf("Dropped %d %s (%s <= %s)", d, n, l, f)
- }
-
- // New builds a new report indexing the sample values interpreting the
- // samples with the provided function.
- func New(prof *profile.Profile, o *Options) *Report {
- format := func(v int64) string {
- if r := o.Ratio; r > 0 && r != 1 {
- fv := float64(v) * r
- v = int64(fv)
- }
- return measurement.ScaledLabel(v, o.SampleUnit, o.OutputUnit)
- }
- return &Report{prof, computeTotal(prof, o.SampleValue, o.SampleMeanDivisor, !o.PositivePercentages),
- o, format}
- }
-
- // NewDefault builds a new report indexing the last sample value
- // available.
- func NewDefault(prof *profile.Profile, options Options) *Report {
- index := len(prof.SampleType) - 1
- o := &options
- if o.Title == "" && len(prof.Mapping) > 0 && prof.Mapping[0].File != "" {
- o.Title = filepath.Base(prof.Mapping[0].File)
- }
- o.SampleType = prof.SampleType[index].Type
- o.SampleUnit = strings.ToLower(prof.SampleType[index].Unit)
- o.SampleValue = func(v []int64) int64 {
- return v[index]
- }
- return New(prof, o)
- }
-
- // computeTotal computes the sum of all sample values. This will be
- // used to compute percentages. If includeNegative is set, use use
- // absolute values to provide a meaningful percentage for both
- // negative and positive values. Otherwise only use positive values,
- // which is useful when comparing profiles from different jobs.
- func computeTotal(prof *profile.Profile, value, meanDiv func(v []int64) int64, includeNegative bool) int64 {
- var div, ret int64
- for _, sample := range prof.Sample {
- var d, v int64
- v = value(sample.Value)
- if meanDiv != nil {
- d = meanDiv(sample.Value)
- }
- if v >= 0 {
- ret += v
- div += d
- } else if includeNegative {
- ret -= v
- div += d
- }
- }
- if div != 0 {
- return ret / div
- }
- return ret
- }
-
- // Report contains the data and associated routines to extract a
- // report from a profile.
- type Report struct {
- prof *profile.Profile
- total int64
- options *Options
- formatValue func(int64) string
- }
-
- func abs64(i int64) int64 {
- if i < 0 {
- return -i
- }
- return i
- }
|